Yeah, I think massive chemical batteries for storing excess electricity to facilitate a contrived green energy market is a bad idea.
Yeah, I think massive chemical batteries for storing excess electricity to facilitate a contrived green energy market is a bad idea.
So uh. I guess those coal and natural gas power plants would fare better in a fire. Something seems wrong there but OP clearly wouldn’t possibly post something on the Internet that was utterly detached from reality.
Energy storage is just that. Fire is frequently quite good at releasing said energy.
Lithium? poof.
Oil? yup.
Nat gas? mmhmm.
wood? yup.
Coal? dang.
Guess all we got left is water - I’m sure that doesn’t have any specific regional requirements…
So tell us champ: what energy storage you got all figured out from that armchair?
Nobody’s ever died from a dam collapse.
Hey! It puts out fires so it’s like… better!
Nuclear though, never had a problem with excess heat at one of those. /s
Was gonna list it but I figured our energy-tzar OP would just complain about radioactive minerals being like batteries with more steps.
None. Use demand shaping instead. I like electrolysis of water, but desalination might make more sense in some regions. I suppose you could even redirect excess electricity to certain computational work.
I imagine you, like many, just don’t understand the insane engineering feat that is an electrical grid. Everything is realtime - Every time someone’s AC kicks on the grid must adapt and provide more power immediately. Power storage is a godsend to this process and in terms of relative age … is very new. With regard to power storage - there are very few ways to hold it that don’t run some risk of fire or other calamitous failure mode. That includes water - but I was being coy when making my statement implying it wouldn’t burn.
To your comment: you could use salt/sea/undrinkable water for energy storage but it comes with regional requirements (elevation change typically) in addition to the water. It’s not one size fits all and definitely doesn’t work in many regions.
Regarding your two options which you offered to create potable water (not to store energy:) Both are wildly inefficient and have one or more major drawbacks to them. Topically - one of these drawbacks is their massive energy requirement. So you provided a way to burn energy faster - not store it ;)
If we build out our GHG-free power capacity beyond our electricity demand, efficiency isn’t an issue. We need fresh water. We need hydrogen and oxygen. I’m sure there are other convenient things to produce whenever electricity demand falls off. These energy storage and reselling schemes are just destroying value.
We have sufficient generation. It’s a question of cleanliness, efficiency, and consistency. Consistency comes with storage and enables cleaner methods, while inconsistent, to be used.
Using your example: what need do we have for food storage? We have grain right now - and we’re growing more! Who needs water storage - we have wells!
Hydrogen and oxygen? Yeah we have that. What technology, currently available, are you suggesting we all switch over to, again? While I’m at it: last I checked stored hydrogen and oxygen have a tendency to uh… burn… and very “energetically.”
You seem fond of the tin foil - you are apparently worried about “big lithium” or some such… wait until you hear about “big energy.”
If you are genuinely posting and not acting in bad faith I imagine you need to broaden your view a bit.
I’m not sure what you mean. Natural fresh water supplies are stressed in many regions. We need hydrogen to fuel vehicles and for the production GHG-free steel and fertilizer. Oxygen of course is necessary for medical and industrial applications. Safely handling hydrogen and oxygen is a solved problem and these gases are not polluting if you have to vent to atmosphere. It only makes sense from a wasteful, financially extractive perspective to store extra electricity by environmentally questionable means instead of actually using that energy right away.
We’ve been talking about energy and energy storage up till now. You’ve been mostly ‘on track’ with said responses up till this point - albeit overly generic and somewhat disconnected from reality… In the last couple responses you’ve jumped from water care to what I can only imagine was the first two Google results when looking up hydrogen / oxygen paired with energy.
Is the other guy okay or did his shift end?
Look. Here’s a sobering bottom line: if it were technologically feasible to “replace batteries” we would have already. Hydrogen powered x isn’t functionally acceptable because:
a) It stores like shit.
b) boom (pressure or rapid combustion - take your pick)
c) It is shockingly (hah) hard to get oxygen and hydrogen to split efficiently. Very few sources of hydrogen are actually energy positive or more efficient than what we already have in more convenient, safer, higher density forms.
I’m all for progress… but armchair warriors that claim the “moral high ground” by shitting on what works currently - while not being able to provide a single other suggestion beyond what they got drip fed from their feed and distilled by their echo
groupchamber need to sit the fuck down. Want to “stick it to big battery?” Go back to landlines. Put a crank back on your car. The list goes on.I digress. Back to energy storage: if you’ve got some brilliant solution - get to it. We’re waiting.
No to storing joules in environmentally questionable batteries. Use the energy immediately to produce useful, necessary stuff like fresh water and hydrogen.
That’s only a solution for when energy demand won’t spike or increase.
The issue is that currently energy demand does spike and increase.
Hydrogen electrolysis is great, but its something to do with “too much” renewables, and also supports having too much batteries, which are more convenient for daily electricity needs from renewables, but also using up high battery storage capacity every day.