Professor Jong-sung Yu's team developed a nitrogen-doped porous carbon material that boosts lithium–sulfur battery performance, achieving rapid charging (12 minutes) and long-term stability (82% capacity retention after 1,000 cycles). This breakthrough could accelerate battery commercialization.
It’s the difference in electronegativity that makes the battery. That’s why you see lithium and oxygen a lot; lithium doesn’t want electrons, oxygen does want them. Sodium and potassium are very close in electronegativity so the salty banana battery wouldn’t be good.
I’m waiting for the cesium / fluorine battery, should theoretically be awesome. Or extremely explosive
That’s a much more serious and informative answer than I deserved.
Thank you for the explanation.
Gotta put my chemistry education to good use somehow, certainly not using it in the IT career I ended up getting in.
-I’m waiting for the cesium / fluorine battery, should theoretically be awesome. Or extremely explosive
I wonder how much it would cost to personally attempt this experiment… (starts hunting for renters insurance)