• NateNate60@lemmy.worldOP
    link
    fedilink
    arrow-up
    0
    ·
    2 months ago

    You got downvoted here but you’re absolutely right. It’s easy to prove that the set of strings with prime length is not a regular language using the pumping lemma for regular languages. And in typical StackExchange fashion, someone’s already done it.

    Here’s their proof.

    Claim 1: The language consisting of the character 1 repeated a prime number of times is not regular.

    A further argument to justify your claim—

    Claim 2: If the language described in Claim 1 is not regular, then the language consisting of the character 1 repeated a composite number of times is not regular.

    Proof: Suppose the language described in Claim 2 is regular if the language described in Claim 1 is not. Then there must exist a finite-state automaton A that recognises it. If we create a new finite-state automaton B which (1) checks whether the string has length 1 and rejects it, and (2) then passes the string to automaton A and rejects when automaton A accepts and accepts when automaton A rejects, then we can see that automaton B accepts the set of all strings of non-composite length that are not of length 1, i.e. the set of all strings of prime length. But since the language consisting of all strings of prime length is non-regular, there cannot exist such an automaton. Therefore, the assumption that the language described in Claim 2 being regular is false.

    • CanadaPlus@lemmy.sdf.org
      link
      fedilink
      arrow-up
      0
      ·
      edit-2
      2 months ago

      By now, I have just one, so thanks for the assist. There’s always that one (sometimes puzzling) downvote on anything factual.

      The pumping lemma, for anyone unfamiliar. It’s a consequence of the fact an FSM is finite, so you can construct a repeatable y just by exhausting the FSM’s ability to “remember” how much it’s seen.